Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Yong, ${ }^{\text {a }}$ Jian-Min Dou, ${ }^{\text {b }}$

De-Zhong Zhu, ${ }^{\text {b }}$ Ying Liu, ${ }^{\text {b }}$ Xue Li $^{\text {a }}$ and Pei-Ju Zheng ${ }^{\text {a* }}$
${ }^{\text {a }}$ Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng Teachers' University, Liaocheng 252000, People's Republic of China

Correspondence e-mail: pjzheng@fudan.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.028$
$w R$ factor $=0.080$
Data-to-parameter ratio $=11.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cation- $\boldsymbol{\pi}$ interactions in $\left[\mathrm{Na}(\text { dibenzo-18-crown-6) }]_{2^{-}}\right.$ $\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$

The crystal structure of the title compound, bis[(dibenzo-18-crown-6)sodium $]$ tetrathiocyanatopalladium(II), $\left[\mathrm{Na}\left(\mathrm{C}_{20} \mathrm{H}_{24}{ }^{-}\right.\right.$ $\left.\left.\mathrm{O}_{6}\right)\right]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$, features an ion-pair-type species consisting of two $\left[\mathrm{Na}(\text { dibenzo-18-crown-6) }]^{+}\right.$cations and a $\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]^{2-}$ dianion which occupies a special position on the inversion centre. The Pd atom has a square-planar coordination formed by four S atoms [Pd-S 2.3241 (9) and 2.3319 (8) $\AA, \mathrm{S}-\mathrm{Pd}-\mathrm{S}$ $\left.90.15(3)^{\circ}\right]$; the ion pairs are held together through $\mathrm{Na} \cdots \mathrm{N}$ interactions [2.423 (3) Å] involving the N atoms of two (out of four) thiocyanate groups. The $\mathrm{Na}^{+} \ldots \pi$ interactions reaching out to the aromatic nucleus of the neighbouring ion pair [$\mathrm{Na} \cdots \mathrm{C} 3.077$ (4) and 3.082 (4) \AA] are responsible for the formation of infinite chains stretching along the [11 0$]$ direction of the crystal.

Comment

Cation $-\pi$ interactions have attracted considerable attention as an important non-covalent binding force. Studies in the gas phase (Sunner et al., 1981), aqueous media (Petti et al., 1988; Forman et al., 1995), solid state (Clark et al., 1992; Beer et al., 1994; Werner et al., 1996), biological systems (Ma \& Dougherty, 1997; Dougherty \& Stauffer, 1990), as well as theoretical calculations (Mecozzi et al., 1996; Jiang et al., 1998, 1999) established the broad scope and significance of these interactions. We have reported the first examples of crown ether complexes, $[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$ (DB18C6 is dibenzo-18-crown-6) (Dou et al., 2000) and $[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pt}(\mathrm{SCN})_{4}\right]$ (Li et al., 2000), which exhibit cation- π interactions responsible for the formation of infinite chains in crystals. However, in spite of the growing interest, the X-ray evidence for the existence of the analogous $\mathrm{Na}^{+} \ldots \pi$ interaction is still limited. Bock and co-workers synthesized two compounds containing interactions of this kind, namely $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=\mathrm{CH}\right.$ $\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]^{-}\left[\mathrm{Na}^{+} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]$ (Bock et al., 1990) and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]^{2-} 2\left[\mathrm{Na}^{+} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]$ (Bock et al., 1989). In the present paper, we report the synthesis and crystal structure of the complex of DB18C6 with $\mathrm{Na}_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$, (I), which provides a new example of $\mathrm{Na}^{+} \ldots \pi$ interaction.

Received 18 December 2000
Accepted 18 January 2001
Online 28 February 2001
(C) 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1
The structure of $[\mathrm{Na}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$ showing 30% probablity displacement elliposoids. H atoms have been omitted for clarity.

Figure 2
A fragment of the infinite chain in the crystal packing of $[\mathrm{Na}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$.

The structure of the title complex (Fig. 1) features an ion-pair-type species consisting of two $[\mathrm{Na}(\mathrm{DB} 18 \mathrm{C} 6)]^{+}$cations and a $\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]^{2-}$ dianion. The Pd atom occupies a special position on the inversion centre and has a square-planar coordination environment formed by four S atoms $[\mathrm{Pd} 1-\mathrm{S} 1$ 2.3241 (9) and Pd1-S2 2.3319 (8) $\AA, \quad \mathrm{S} 1-\mathrm{Pd} 1-\mathrm{S} 2$ $\left.90.15(3)^{\circ}\right]$. The average $\mathrm{Pd}-\mathrm{S}, \mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths (2.3270, 1.671 and $1.133 \AA$, respectively) are consistent with the corresponding values in $[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$ (Dou et al., 2000) and $[\mathrm{K}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{Wu}$ et al., 1991).

In the $[\mathrm{Na}(\mathrm{DB} 18 \mathrm{C} 6)]^{+}$cation, the $\mathrm{Na}-\mathrm{O}$ bond lengths span the range $2.559-2.853 \AA$. The Na^{+}ion is also coordinated by the N atom of one of the SCN groups at a distance of 2.423 (3) \AA, which is consistent with the $\mathrm{Na}-\mathrm{N}$ distance $[2.472(8) \AA]$ in $[\mathrm{Na}(\mathrm{B} 15 \mathrm{C} 5)]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right](\mathrm{B} 15 \mathrm{C} 5$ is benzo-15-crown-5) (Zhu et al., 2000). The remainder of its coordination sphere is made up of the $\mathrm{Na} \cdots \mathrm{C} 113^{\mathrm{i}} 3.077$ (4) \AA and $\mathrm{Na} \cdot \mathrm{C} 114^{\mathrm{i}} 3.082$ (4) \AA [symmetry code: (i) $2-x,-y, 1-z$] close contacts involving one of the phenylene rings of the DB18C6 ligand of the neighbouring $[\mathrm{Na}(\mathrm{DB} 18 \mathrm{C} 6)]_{2}[\mathrm{Pd}-$ $\left.(\mathrm{SCN})_{4}\right]$ ion pair. These interactions give rise to the formation
of infinite chains stretching along the [110] direction in the crystal (Fig. 2). Similar infinite chains formed due to $\mathrm{Na} \cdots \pi$ interactions with even shorter $\mathrm{Na} \cdots \mathrm{C}$ distances were observed in the above-mentioned complexes reported by Bock et al. $(1989,1990)$ (the average Na . . . C distances are 2.86 and $2.88 \AA$ respectively).

Experimental

The synthesis of the title complex was effected by adding 10 ml of aqueous mixture of $\mathrm{PdCl}_{2}(0.025 \mathrm{M})$ and $\mathrm{NaSCN}(2 \mathrm{M})$ to 10 ml of 0.1 M solution of DB18C6 in 1,2-dichloroethane. The reaction mixture was stirred for 2 h at room temperature and then filtered. The precipitate was dissolved in acetone. M. p. $485-487$ K. Found: C 47.51, H 4.25, N 4.72, S $11.23 \% ; \mathrm{C}_{44} \mathrm{H}_{48} \mathrm{Na}_{2} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{PdS}_{4}$ requires: C 47.79, H 4.38, N 5.07, S 11.58%. Selected FT-IR $\nu / \mathrm{cm}^{-1}: 2920,2850$, $2111,1695,1595,1504,1251,1213,1125,960,940,751$. The singlecrystal was obtained from a 4:1 diethyl ether/acetone solution.

Crystal data

$\left[\mathrm{Na}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]_{2}\left[\mathrm{Pd}(\mathrm{SCN})_{4}\right]$	$Z=1$
$M_{r}=1105.48$	$D_{x}=1.487 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo K 2 radiation
$a=11.5695(10) \AA$	Cell parameters from 25
$b=8.568(3) \AA$	reflections
$c=12.976(2) \AA$	$\theta=10.5-13.5^{\circ}$
$\alpha=81.58(2)^{\circ}$	$\mu=0.63 \mathrm{~mm}^{-1}$
$\beta=104.804(10)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=96.85(2)^{\circ}$	Prism, orange
$V=1225.7(5) \AA^{3}$	$0.60 \times 0.50 \times 0.40 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.020$
ometer	$\theta_{\text {max }}=25.2^{\circ}$
$\theta / 2 \theta$ scans	$h=-13 \rightarrow 13$
Absorption correction: ψ scan	$k=-10 \rightarrow 10$
\quad North et al., 1968$)$	$l=0 \rightarrow 15$
$T_{\text {min }}=0.834, T_{\text {max }}=0.884$	3 standard reflections
4622 measured reflections	every 200 reflections
4406 independent reflections	frequency: 3600 min
3190 reflections with $I>2 \sigma(I)$	intensity decay: 5.0%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.080$
$S=1.0$
4406 reflections
400 parameters
All H -atom parameters refined
Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1-S1	$2.3241(9)$	$\mathrm{Na} 1-\mathrm{O} 4$	$2.853(2)$
$\mathrm{Pd} 1-\mathrm{S} 2$	$2.3319(8)$	$\mathrm{Na} 1-\mathrm{O} 5$	$2.841(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.663(4)$	$\mathrm{Na} 1-\mathrm{O} 6$	$2.559(2)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.664(4)$	$\mathrm{Na} 1-\mathrm{C} 113^{\mathrm{i}}$	$3.077(4)$
$\mathrm{Na} 1-\mathrm{N} 1$	$2.423(3)$	$\mathrm{Na} 1-\mathrm{C} 114^{\mathrm{i}}$	$3.082(4)$
$\mathrm{Na} 1-\mathrm{O} 1$	$2.572(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.151(4)$
$\mathrm{Na} 1-\mathrm{O} 2$	$2.559(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.133(4)$
$\mathrm{Na} 1-\mathrm{O} 3$	$2.597(2)$		

$\mathrm{S}^{\mathrm{ii}}-\mathrm{Pd} 1-\mathrm{S} 2$	$90.15(3)$	$\mathrm{O} 5-\mathrm{Na} 1-\mathrm{O} 4$	$52.46(7)$
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 3$	$64.23(7)$	$\mathrm{O} 6-\mathrm{Na} 1-\mathrm{O} 1$	$64.00(7)$
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1$	$59.40(7)$	$\mathrm{O} 6-\mathrm{Na} 1-\mathrm{O} 5$	$60.17(7)$
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 4$	$59.83(7)$	$\mathrm{C} 113^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{C} 114^{\mathrm{i}}$	$25.32(11)$

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

The H atoms were located in the difference map and were refined isotropically; the $\mathrm{C}-\mathrm{H}$ bond lengths span the range $0.88-1.08 \AA$.

Data collection: CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: CAD-4 Manual; data reduction: SDP-Plus (Frenz, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1996); software used to prepare material for publication: SHELXL97.

References

Beer, P. D., Grew, M. G. B., Leeson, P. B. \& Ogden, M. I. (1994). J. Chem. Soc. Dalton Trans. pp. 3479-3485.
Bock, H., Ruppert, K. \& Fenske, D. (1989). Angew. Chem. Int Ed. Engl. 28, 1685-1688.
Bock, H., Ruppert, K., Havlas, Z. \& Fenske, D. (1990). Angew. Chem. Int Ed. Engl. 29, 1042-1044.
Clark, D. L., Watkin, J. G. \& Huffman, J. C. (1992). Inorg. Chem. 31, 1554 1556.

Dou, J. M., Liu, Y., Zhu, L. Y., Sun, D. Z., Zheng, P. J., Du, C. X. \& Zhu, Y. (2000). Chin. Chem. Lett. 11, 463-466.

Dougherty, D. A. \& Stauffer, D. A. (1990). Science, 250, 1558-1560.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J (1996). ORTEP-3. Version 1.03. University of Glasgow, Scotland.
Forman, J. E., Barrans, R. E. Jr \& Dougherty, D. A. (1995). J. Am. Chem. Soc. 117, 9213-9228.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Jiang, H. L., Zhu, W. L., Tan, X. J., Chen, J. Z., Zhai, Y. F., Liu, D. X., Chen, K. X. \& Ji, R. Y. (1999). Acta Chim. Sin. 57, 860-868. (In Chinese.)

Jiang, H. L., Zhu, W. L., Tan, X. J., Gu, J. D., Lin, M. W., Chen, K. X. \& Ji, R. Y. (1998). Sci. China (Ser. B), 28, 404-409. (In Chinese.)

Li, X., Dou, J. M., Liu, Y., Zhu, L. Y., Sun, D. Z. \& Zheng, P. J. (2000). Acta Cryst. C56, 1185-1187.
Ma, J. C. \& Dougherty, D. A. (1997). Chem. Rev. 97, 1303-1324.
Mecozzi, S., West, A. P. Jr \& Dougherty, D. A. (1996). J. Am. Chem. Soc. 118, 2307-2308.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Petti, M. A., Shepodd, T. J., Barrans, R. E. Jr \& Dougherty, D. A. (1988). J. Am. Chem. Soc. 110, 6825-6840.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sunner, J., Nishizawa, K. \& Kebarle, P. (1981). J. Phys. Chem. 85, 1814-1820.
Werner, B., Krauter, T. \& Neumuller, B. (1996). Organometallics, 15, 37463751.

Wu, J. H., Wang, M., Zheng, P. J., Zhang, J. Z., Chen, Z., Sheng, J. M. \& Yang, Y. H. (1991). J. Chin. Struct. Chem. 10, 67-70.

Zhu, L. Y., Dou, J. M., Liu, Y., Sun, D. Z., Zheng, P. J., Du, C. X. \& Zhu, Y. (2000). Chin. Chem. Lett. 11, 835-838.

